Plasmon enhanced direct and inverse Faraday effects in non-magnetic nanocomposites

نویسندگان

  • Yu Gu
  • Konstantin G. Kornev
چکیده

While applications of plasmonics are rapidly growing, magneto-optical effects in nanocomposites are poorly understood. We therefore devote this paper to the theoretical analysis of magneto-optical effects in nanocomposites. Based on the Drude model, we derived the constitutive equation where the dielectric and coupling functions describe the interactions of metal nanoparticles with magnetic field. In the limitation of low volume fraction of metal nanoparticles (i.e., when the material is still transparent), these functions were calculated within the Maxwell–Rayleigh theory of dilute suspensions. We showed that in the absence of external magnetic fields, a non-magnetic nanoparticle can be magnetized in the circularly polarized light beam, and the magnetization depends on the direction of rotation of the light wave. The external magnetic field alters the particle magnetization, and when the fields are weak, this change in magnetization linearly depends on the particular field. The proposed theory was applied to an analysis of the Faraday effect in nanocomposites. We predicted a resonance behavior of the Verdet function in nanocomposites and its dependence on concentration, sample thickness, and external magnetic field. © 2010 Optical Society of America OCIS codes: 230.3810, 160.3820, 160.4236.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inverse Faraday effect in plasmonic heterostructures

The phenomenon of the surface plasmon assisted electromagnetic field concentration in the vicinity of the metal/dielectric interface of a periodically perforated with subwavelength holes arrays plasmonic structure is considered. An increase of the local stationary magnetic field appearing due to the inverse Faraday effect while the heterostructure is illuminated by circularly polarized light is...

متن کامل

Magnetophotonic Materials and Their Applications

Experimental and theoretical studies of light coupling to various magnetic nanostructured media and nanocomposites are briefly reported. Enhancement of the magneto-optical response is shown to occur when the constitutive materials of photonic crystals are magnetic. Transmission and reflection types of 1D magnetophotonic crystals (MPCs) have been studied. New possibility to enhance the magneto-o...

متن کامل

Surface plasmon resonance enhanced magneto-optics (SuPREMO): Faraday rotation enhancement in gold-coated iron oxide nanocrystals.

We report enhanced optical Faraday rotation in gold-coated maghemite (gamma-Fe(2)O(3)) nanoparticles. The Faraday rotation spectrum measured from 480-690 nm shows a peak at about 530 nm, not present in either uncoated maghemite nanoparticles or solid gold nanoparticles. This peak corresponds to an intrinsic electronic transition in the maghemite nanoparticles and is consistent with a near-field...

متن کامل

Magneto-optical Faraday activity in transparent FeCo- sepiolite/polystyrene nanocomposites

FeCo nanoparticles synthesized on sepiolite microparticles were used for the preparation of nanocomposites by melt compounding with polystyrene. Both, the sepiolite fibers and the nanoparticles were free of agglomeration, which allowed preparing nanocomposites with a homogeneous dispersion of the second phases, avoiding the usual agglomeration of the nanoparticles and minimizing light scatterin...

متن کامل

Investigation of non-reciprocal magneto-plasmonic waveguides for compact integrated optical isolators on silicon

Introduction Creating compact on-chip non-reciprocal components is of fundamental interest in integrated optics at telecom wavelength of 1.55 μm. Today a lot of integrated functions are available commercially such as lasers, couplers, filters, modulators, but there is a lack of non-reciprocal integrated functions like optical isolators and circulators. Commercial optical isolators are expensive...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010